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Abstract

A simple kind of strategy annotations is investigated, giving rise to a class of strate-
gies, including leftmost-innermost. It is shown that under certain restrictions on
annotations, an interpreter can be written which computes a normal form of a term
in a bottom-up traversal. The main contribution is a correctness proof of this inter-
preter. Furthermore, a default strategy annotation is provided, called just-in-time,
which satisfies the criteria for the interpreter. The just-in-time strategy has a better
termination behaviour than innermost rewriting for many interesting examples.

1 Introduction

A term rewrite system (TRS) is a set of directed equations. A term is evaluated
by repeatedly replacing a subterm that is an instance of the left-hand side of
an equation (a redex) by the corresponding instance of the right-hand side
(the contractum) until a term is reached which contains no redex (a normal
form). Because a term can have many redexes, an implementation has to
follow a certain strategy, that tells at any moment which redex should be
chosen. A strategy is often chosen for its efficiency: following a good strategy
results in short rewrite sequences. A smart strategy may even avoid infinite
computations.

For an actual interpreter, one must also take into account the cost of
finding the next redex. This is the reason that many systems implement
leftmost-innermost rewriting, although this may produce relatively long re-
duction sequences, and has a bad termination behaviour [7]. We will use
annotations as a simple way to specify strategies.

1.1 Strategy Annotations

Consider the following term rewrite system (TRS), where if, T and F are
function symbols, b, z, y are variables, and which has three rewrite rules,
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named o, B and 7:

a:if(T,z,y) > =
B:if(Fz,y)—y
v: if(byz,z) — z

A natural way of normalizing the term if (p,q,r) is to first normalize p, and
then try rule « or 8. This procedure avoids unnecessary reductions inside g
or r. In some cases, this could even prevent non-terminating computations. If
the first argument doesn’t reduce to T or F' (for instance because p is an open
term or because some rules are missing), the second and third argument must
be normalized, and finally the last rule v is tried. The sketched procedure can
be very concisely represented by the following strategy annotation for if:
stra,t(zf) = [17 «, ﬂa 27 37 ’Y]

We say that rule oo and f need the first argument, because they match
on it. Rule < needs the second and third arguments, because it compares
them. We say that the annotation is in-time because the arguments of if
are evaluated before the rules which need them are tried. We say that this
annotation is full because all argument positions and rules for if occur in it.

Another full and in-time annotation for if would be [1,2,3,q, 3,7], de-
noting the left-most innermost strategy. We will define a default annotation,
which evaluates all its arguments from left to right, and tries to apply a rule
as soon as its needed arguments are evaluated. We call this default strategy
the just-in-time strategy. Note that strat(if) is the just-in-time strategy.

1.2  Contribution

Following [18], we define a normalizing function norm(t), which normalizes a
term according to a strategy annotation for all function symbols. It traverses
the term once, and computes a normal form in a bottom-up fashion. If a redex
is found at a certain position, it is replaced and the search proceeds at the
same position. So for these strategy annotations, finding the next redex is as
efficient as for innermost rewriting. The normalization function has been used
as a design to build an actual interpreter in the programming language C.

Viewing normal forms as the correct answers, partial correctness of the
normalizer means that if norm(t) = s, then s is a normal form of t. We call
a strategy annotation complete if norm is partially correct. Our main result
is that full and in-time are sufficient syntactic criteria for completeness. This
result applies to any TRS, without restrictions. This generalizes [17], because
our restrictions are more liberal, and that proof only works for left-linear
TRSs.

The proof yields some extra information: although norm continues at the
position where the previous redex was found, it is equivalent to a particular
memory-less strategy. This means that the chosen redex depends on the term
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only, and not on previous reduction steps. Moreover, norm(t) follows this
strategy even for infinite reduction sequences.

A default strategy annotation (called just-in-time) that is full and in-time
can be computed automatically, and is satisfactory for many function def-
initions, including if-then-else and the boolean connectives conjunction and
disjunction.

1.8 Related Work

Many rewrite (logic) implementations allow the user to specify a strategy.
ELAN |[2] was the first rewrite implementation, where users can define their
own strategies. Rewrite rules are viewed as basic strategies, that can be
composed by sequential, alternative and conditional composition. Mechanisms
to control non-determinism are also present. In Maude [5] strategies can be
defined inside the logic, thanks to the reflection principle of rewrite logic.
Stratego [19] incorporates recursive strategies and general traversal patterns.
It was shown [14] how these can be defined inside ASF+SDF [4,3].

All mentioned strategy languages are far richer than the annotations stud-
ied in our paper. Those systems advocate a separation between computations
(rules) and control (strategies). By writing strategies the user can freely choose
when the rules are applied. Important applications are the specification of pro-
gram transformations. However, these strategies are not always complete, in
the sense that a strategy might terminate in a term that still contains redexes.
As far as we know, no analysis exists whether subclasses of these strategies
are complete, which is an important issue if one is interested in finding normal
forms.

Members of the OBJ-family [9,16,18] have strategy annotations that are
similar to the ones discussed in our paper. In OBJ an annotation is a list of
integers. Similar to us, +¢ denotes the normalization of the i-th argument.
There are two differences. First, instead of mentioning rules individually (our
a, (), OBJ uses 0 to denote a reduction at top level with any rule. Our
more refined notion allows to assign a priority in applying the rules. Avoiding
repetitions of 0 (which would lead to multiple calls to the matching procedure),
in OBJ the only full and in-time annotation for the three if-rules mentioned
before is the strategy [1,2,3,0], which corresponds to innermost rewriting.
The second difference is that OBJ allows —i, denoting that argument z is only
normalized on demand (i.e. if it is needed for matching with another rule).
Such annotations specify lazy rewriting, which we have not studied.

The default strategy of CafeOBJ is similar to our just-in-time annotation.
We cite from [16, p. 83]: For each argument, evaluate the argument before the
whole term, if there is a rewrite rule that defines the operator such that, in the
place of the argument, a non-variable term appears. We added to this: “or
if in the place of the argument, a non-left-linear variable occurs”. This extra
condition is necessary for obtaining the completeness result of our paper. It is
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not clear from [9,16] whether the OBJ-systems check the completeness of the
user-provided annotation.

In [15] and [17] completeness of OBJ-annotations is studied. [15] only
considers eager annotations, and proves (Thm. 6.1.12) that full annotations
ending in a 0 are complete. This is generalized in [17, Cor. 3.8] by allowing
argument positions after the last 0. In a separate correction, those authors
indicate that their proof doesn’t work for non-left-linear TRSs. Moreover,
in [17] the criteria depend on all occurrences of function symbols in left hand
sides, where our criteria only depend on head-occurrences. As a consequence,
given the left hand sides g(f(c)) and f(z), the annotation f : [0,1] is not
allowed by the criteria of [17], where it would be allowed by our criteria. So
we generalize the mentioned results, by having more liberal criteria on a larger
class of TRSs. On the other hand, [17] also considers criteria for on-demand
annotations, which we have not studied.

All normalization functions we found in the literature, e.g. [18,15,17] are
presented with some memory (either by labeling or by using non-tail-recursive
calls). Our correctness proof provides the extra information that the inter-
preter actually follows a certain memory-less strategy, even in case of diver-
gence.

In [11] a survey of strategies in term rewriting is given. The focus is on
normalizing strategies for orthogonal systems. A strategy is normalizing if it
finds a normal form whenever one exists. Orthogonality is a syntactic criterion
which ensures confluence. For non-orthogonal systems only few results on
normalizing strategies exist. We have not studied which class of annotations
gives rise to normalizing strategies. On the other hand, our results apply to
non-orthogonal term rewriting systems as well. In [15] decidable criteria on
eager OBJ-annotations are provided which are sufficient to ensure normalizing
strategies for orthogonal TRSs. These results can probably be adapted to
our annotations. Recently, [12,13] studied normalizability of positive OBJ
strategies and of our strategy annotations and termination of rewrite systems
using such strategies. These issues are studied in the framework of context
sensitive rewriting.

2 Basic Definitions and Result

2.1 Preliminaries

We take standard definitions from term rewriting [11,1]. We presuppose a
set of variables, and function symbols (f), each expecting a fixed number of
arguments, denoted by arity(f). Terms are either variables (z) or a function
symbol f applied to n terms, denoted f(t1,...,t,), where n is the arity of f.
With head(t) we denote the topmost function symbol of .

A position (p, q) is a string of integers. By ¢ we denote the empty string.
With t|, we denote the subterm of ¢ at position p, which is only well-defined
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if p is a position in ¢ (see [1] for a formal definition). In that case, t|. = t and
ft1, .. te)lip = tilp- With t[s], we denote the term ¢ in which ¢, is replaced
by s. We write p < ¢ if p is a prefix of ¢ (i.e. p.p’ = ¢ for some p').

A rewrite rule is a pair of terms [ — 7, where [ is not a variable, and all
variables occurring in 7 occur in [ as well. A term rewrite system (TRS) is a
set of rewrite rules. A substitution is a mapping from variables to terms, and
with ¢” we denote the term ¢ with all variables = replaced by o(z). A TRS
R induces a rewrite relation on terms as follows: ¢ —g ¢[r], if and only if
t|, = 1 for some rule [ — r € R. In this case [” is called the redex and r° the
contractum, and the pair (17, 7%) is called a rewrite in [11]. A normal form is a
term ¢ which contains no redex. Note that a redex may have many occurrences
in the same term, so in order to uniquely identify the rewrite step, we also
need a position p. From the position p the redex [° can be reconstructed. For
this reason, it is convenient to call the pair (p, r?) a rewrite of t.

2.2 Strategy Annotations and Strategies

A strategy annotation for a function symbol f in TRS R is a list whose elements
can be either:

* a number 7, with 1 <14 < arity(f); or
* arule l— r € R, such that head(l) = f.

Without loss of generality, we will assume that an annotation has no dupli-
cates, i.e. each i occurs at most once (after the first normalization the i’th
argument is normal, so a second occurrence of ¢ would not contribute an ac-
tual rewrite step). We write [] for the empty annotation and [z|L] for the
annotation with head z and tail L. In the sequel 7, j, k will range over argu-
ment positions, and e, B,y over rewrite rules. So [1|L] starts with a natural
number and [o|L] with a rewrite rule.

An index 7 is needed for a left hand side f(I4,...,1,), if [; is not a variable,
or if it is a variable which occurs in [}, for some j # i. Index ¢ is needed for
rule @ : | — r if 7 is needed for [. A strategy annotation L is full for f, if
for each ¢ with 1 < ¢ < arity(f), ¢ € L and for each rule o : [ — r € R with
head(l) = f, o € L. A strategy annotation L is in-time, if for any o and 7 such
that L = LyaLsiLs, i is not needed for o. In a full and in-time annotation
all needed positions for o occur before . The distinguishing feature of the
notion ‘needed’ is as follows:

Lemma 2.1 Let [ = f(ly,...,l,) and let argument i be not needed for l. If
t = 1% for some o, then for any s, t[s]; = I® for some p.

Proof. For some o, t =17 = f(If,...,19). Because 7 is not needed for [, [; is
a variable. Let p = o[l; := s]. As 7 is not needed, l; doesn’t occur in [; (for
j#14),s0lf =17, and I = s. Hence I* = t[s];. O
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We now define the strategy associated to a strategy annotation. A strategy
can be viewed! as a partial function that given a term ¢, yields some rewrite
of t, i.e. a pair (g, s) such that t|, = [ and s = r° for some rule [ — r and
substitution o. In this case ¢ — g t[s],. Alternatively the function may yield
L (undefined — found no rewrite). A complete strategy yields L on ¢ only if ¢
is a normal form.

In the sequel, a fixed TRS R is supposed, with a fixed strategy annotation
strat. We write strat(t) as an abbreviation of strat(head(t)), i.e. the strategy
annotation of its head symbol, where strat(z) = [] for variables z. We say that
strat is full (in-time) if strat(f) is full (in-time) for all symbols f. Next we de-
fine rewr; (¢, L), which computes the next rewrite in ¢ according to annotation
L. We allow a slight overloading as in rewr;(¢) in case L = strat(t).

Definition 2.2 rewr;(t) = rewr; (¢, strat(t)), where:

rewr;(t,[]) = L

( if t =17 for some o

rewry (t, [l = r|L]) = ¢ then (g, )

else rewr,(t,L)

(it rewr; (t|;) = (g, s) for somegq, s

rewry (t,[i|L]) = { then (i.g,s)

else rewr;(t, L)

The definition proceeds by induction on ¢ and the strategy-annotation L.
In each recursive call, either the term ¢ gets smaller, or it remains equal and
the list L gets smaller. Therefore this function terminates either in (g, s) or in
L. We now show that for full annotations, the associated strategy is complete:

Proposition 2.3 If strat is full and rewr;(t) = L, then t is a normal form

Proof. The proof is with induction on t. Assume that ¢ is not in normal
form. Then it contains a redex, either at top level, or in a proper subterm.
We distinguish these two cases:

* Assume that ¢t = [” for some rule « : | — r. Then, by induction on L one
can show: “if @ € L then rewr;(¢t, L) is defined”. By fullness, a € strat(t),
so rewr; (t) = rewr, (¢, strat(t)) is defined.

* Assume that ¢|; contains a redex. Then using the induction hypothesis, one
can show with induction on L: “if ¢ € L, then rewr,(t, L) is defined”. By
fullness, © € strat(t), so rewr;(t) = rewr; (¢, strat(t)) is defined. O

! This covers deterministic, one-step, memory-less strategies only.
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2.8 Problem Statement

Given a strategy annotation, the associated reduction sequence can be defined
as follows:

if rewr;(t) = (g, s) for some q, s
seq;(t) = ¢ then t :: seq,(t[s],)
else (t)

By the previous proposition, a normal form can be obtained as last(seq,(¢))
(for infinite sequences this is undefined). The computational drawback is that
after each step the whole term ¢[s], must be traversed to find the next rewrite.
This repeats a lot of work of the previous step. It would be nice if the search
could be continued at position q. Therefore we propose the following partial
function, norm(t,L), which tries to find a normal form of ¢, according to
annotation L. We allow a slight overloading, as in norm(t), in case L is the
fixed strategy annotation strat. We view this function as the design for an
interpreter.

Definition 2.4 norm(t) = norm(t, strat(t)), where:
norm(t,[]) = ¢
if t =17 for some o
norm(t, [l = r|L]) = ¢ then norm(r°)
else norm(t, L)
norm(t, [1|L]) = norm(t[norm(t|;));, L)

Avoiding position-notation, the last clause can be written alternatively as
norm(f(te, ..., b, .., ta), [{|L]) = norm(f(ts,. .., norm(t;),...,t,), L).

If ¢ is a non-terminating term, norm(t) might diverge, in which case it is
undefined. The next section is devoted to the technical core of this paper,
viz. correctness of norm. That is, we must prove

Theorem 2.5 If strat is in-time, then norm(t) = last(seq, (t)).

This follows immediately from Propositions 3.1 and 3.7. In combination with
Proposition 2.3, we obtain that for full and in-time strategies, if norm(t) = s,
then s is a normal form.

2.4 Counter ezamples

It may be illustrative to show why the conditions on annotations are needed.
Consider the system with three if-rules from the introduction, and an addi-
tional rule TAT — T.

The strategy-annotation [o, 8, 1,2, 3,] is not in-time, because oz matches
on the first argument. Consider the term if (T AT, z,y). Rule o and § are not
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immediately applicable. After reduction of T AT, o and 8 will not be tried
again. So under this annotation, norm(if (T A T, z,vy)) = if (T, z,y), which is
not normal. Similarly, [1,a, 8,+,2, 3] is not in-time, because v is non-linear in
its second and third argument. Under this annotation, norm(if (z, TAT, T)) =
if (z,T,T). This is not normal, due to the fact that v was tried too early.
Finally, [e, 8,2, 3, 7] is not full, because argument position 1 is missing. Under
this annotation norm(if (T AT, z,y)) = if (T AT, z,vy), which is not normal.

These examples show that the conditions cannot be dropped in general.
In certain cases they could be weakened. For instance in « : f(z) ~ g(z), the
annotation [a] is not full, but this is harmless because a applies to any term
with head symbol f. This weakening is inessential, because the behaviour of
the interpreter is exactly the same as with the full strategy [, 1].

3 Correctness Proof

The proof has two distinct parts. First we identify the series of redexes con-
tracted by norm. This is not straightforward due to its doubly recursive
definition. By program transformation we find an equivalent function norms,
where the double recursion is eliminated in favour of a stack containing the
return points. From this definition the series of redexes can be easily extracted
(Section 3.1).

At first sight, norm doesn’t follow a memory-less strategy, because after
finding a redex at position g, it continues its search from ¢ onwards. Therefore,
the found rewrite depends on a certain internal “state” or “memory”, say S.
Hence the strategy will be a function of the form rewr, (¢, S) = (g, s, R), where
(g, 5) is the found rewrite, and R denotes the next state. In the sequel, the
triple (g, s, R) will also be called a rewrite.

The second step in the proof (Section 3.2) shows that if the annotation is
in-time, then the state doesn’t influence the rewrite found. That is, the next
rewrite can be found in two equivalent ways: rewrs(t(s]y, S) = rewrs (t[s],, R).
The proof is then finished by the observation that for the initial state I ,
rewrsy(t, I) = rewr; (t).

3.1 Making Recursion Ezplicit

This section eliminates the double recursion from norm. In the first trans-
formation, we replace recursion on subterms by recursion on positions. This
makes it possible to return to a previous stage. First specify:

normy(t,p, L) = t[norm(¢|p, L)),
8




Next, using this definition and the defining equations for norm, we can calcu-
late (Section A.1) the following recursive definition for norm;:

normi(t,p,[]) =t
if t|, = 1° for some o
normy(t,p, [l — 7|L]) = then norm,(t[r°],, p, strat(r?))
else norm, (¢, p, L)
normy (t,p, [1|L]) = norm(norm4(t,p.i, strat(t|p;)), p, L)

Next, we eliminate the double recursion in favour of a stack, which is a
list of pairs of previous positions and the annotations that still have to be
executed. To this end, we introduce the recursive specification for norms:

normay(t,[]) =t
norma(t, [(p, L)|S]) = norma(normy(t,p, L), S)

From this specification, and the recursive equations derived for norm;, we can
derive (Section A.2) the following recursive equations for norms:

norma(t,[]) =t
norms(t, [(p, [)|S]) = norms(t, S)
if t|, = I for some o
norma(t, [(p, [l = 7|L])|S]) = then norms(t[r°l,, [(p, strat(r?))|S])
else norms(t, [(p, L)|S])
norma(t, [(p, [i[L])|S]) = norma(t, [(p-i, strat (t],.)), (p, L)|S])

From this explicit definition it is easy to guess the next rewrite that norm,
will take, given the current state (stack) S. This gives rise to the following
definition rewrs(t, S). The result will be either L, or a triple (g, s,T), where
(g, s) denotes the rewrite as previously, and T is the stack after replacing ¢[s,.

rewrs(t,[]) = L
rewrs(t, [(p, [])|S]) = rewrs (¢, S)
if t|, = [ for some o
rewrs(t, [(p, [l = r|L])[S]) = {  then (p, %, [(p, strat(r))|S])
else rewry(t, [(p, L)|S])
rewrs (t, [(p, [i|L])|S]) = rewrs(t, [(p-3, strat(t]p)), (p, L)|S])

Given this function rewry, we can define a second rewrite sequence. This
time the sequence is not memory-less, because each step changes the state
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(stack S) of the system.
if rewrs(t,S) = (¢, s, R) for some q, s, R
seqy(t,S) = { then ¢ :: seq,(t[s],, R)
else (t)

In order to check that rewry(¢,.9) indeed yields the next rewrite taken by
norms in state S, one can take the specification

norms(t, S) = last(segy(t,S))

Using the definitions of seg, and rewry, one can derive recursive equations for
normg (Section A.3), which appear to be exactly the same as those for norms.
We summarize the result of this section:

Proposition 3.1 norm(t, strat(t)) = last(seg,(t, [(g, strat(t))])).

Proof. First, normi(t,p, L) = normy(norm,(t,p, L), []) = norma(t, [(p, L)])-
Also, norm(t, L) = t[norm(t|s, L)]e = norm(t,e, L). The result follows be-
cause by the previous remark normy(t, S) = last(seg,(t, S)). O

3.2 Connecting Memory-less and State-based Strategies

It is now sufficient to prove that seg,(t, [(¢, strat(t))]) = seq,(t). This is the
case if rewry(t, S) yields the same rewrite as rewr, (t), for all reachable states
S. To this end, we first show that the stack will be always well-formed (de-
fined below). Then we show that in fact rewr, is actually independent of the
current state, i.e. rewry(t, S) = rewrs (2, [(¢, strat(t))]) for all stacks S encoun-
tered (Lemma 3.5). Finally, we show that rewrs(t, (e, strat(t))]) = rewr;(¢)
(Lemma 3.6).

We now define the set of well-formed stacks w.r.t. ¢. Intuitively, the po-
sitions in the stack form a proper path in ¢, all annotations on the stack are
in-time, and nodes can be visited at most once.

Definition 3.2 The set of well-formed stacks w.r.t. t are defined inductively

as follows:

* [] 25 well-formed.

* [(e, L)] is well-formed, if L is an in-time strategy annotation for head(t).

* [(p4, K), (p, L)|S] is well-formed, if [(p, L)|S] is well-formed, and p.i is a
position in t and K is an in-time strategy annotation for head(t|,;) and
ig L.

Lemma 3.3 If strat is in-time, then it is an invariant of rewrs (and norm,
and seq,) that the stack is well-formed.

Proof. [(e, strat(t))] is well-formed (initial condition) and the property is pre-
served in all recursive calls. This relies on the assumption that strategy an-
notations contain no duplicates. 0
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L Lemma 3.4:3 T

Lemma 3.4;2-::;': ....... SN

"Lemma, 34.1

Finding a redex in ¢ Finding a redex in [s],

Fig. 1. The search in ¢ can be mimicked in ¢[s],.

The following technical lemma is the core of the proof. It shows that if search-
ing in ¢ from state S yields a rewrite (g, s, R), then the search in ¢t from S can
be mimicked in t[s],, and will lead again to state R (see Figure 1). The key
of the proof is that if rule « is not applicable at ¢|,, then a reduction inside
t|, can only occur in an argument which is not needed, so also in t[s],|, rule a
will not be applicable. The full proofs of Lemma 3.4-3.7 are in Appendix B.
Lemma 3.4 Let strat be in-time. Let [(p, L)|S] be a well-formed stack. As-
sume rewrs(t, [(p, L)|S]) = (g, s, R), for some ¢, s and R. Then we have:

(i) If ¢ 2 p then rewrs(t, [(p, L)|S]) = rewrs(t,S).
(i) If p= q then R = [(p, strat(s))|S).
(i) g £ p, then reurs(tlsly, [(5, L)IS]) = rewrs (¢[sl,, B).

Proof sketch.

(i) Induction on the structure of ¢|,, and for equal t|, on the structure of L.
The proof proceeds by case distinction on L.

(ii) Induction on L, using (i) in case L = [z|L'].

(iii) Starting with stack [(p, L)|S] and term ¢, rewrp reduces in a number
of steps to (g, s, R). The proof proceeds by mimicking this reduction
starting with the same stack in term t[s],. The proof is by induction on
the number of recursive calls of rewrs(t, [(p, L)|S]) to (g, s, R). O

Lemma 3.5 Let strat be in-time. If rewry(t, [(g, strat(t))]) = (g, s, R) then
rewrs (t[s]q, R) = rewrs(t[s]q, [(€, strat(t[s]y))])-

Proof sketch. If g = ¢, this follows from Lemma 3.4.(ii). Otherwise, ¢ > ¢,
and the result follows from Lemma 3.4.(iii). O
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Finally, we prove the relationship between rewr; and rewrs:
Lemma 3.6
(i) rewr;(t) = (¢,5) <= for some R, rewrs(t, (e, strat(t))]) = (¢, s, R)
(ii) rewr;(t) = L <= rewrs(t, [(¢, strat(t))]) = L

Proof sketch. The proof follows from the following propositions, which can
be proved by simultaneous induction on the structure of ¢|, and, for equal t,,
on L.

(i) if rewr;(t|p, L) = (g, s), then for some R, rewry(t, [(p, L)|S]) = (p.g, s, R).
(i) if rewr; (tlp, L) = L, then rewry(t, [(p, L)|S]) = rewrs (¢, S). a

Proposition 3.7 If strat is in-time, then seq,(t,[(g, strat(t))]) = seg,(2).

Proof sketch. Using Lemma 3.5 and 3.6 the definition of seq,(t, [(¢, strat(t))])
can be transformed into the definition of seq, (t). i

4 Implementation and Applications

We have constructed a C-implementation of the function norm, which acts
as an interpreter of a given TRS annotated by some strategy. As a default,
the system computes the just-in-time strategy during initialization. We first
describe this annotation, and then mention some implementation issues.

4.1 The Just-in-time Strategy Annotation

The just-in-time strategy is defined as follows. For any function symbol f,
with arity n, take the list [1,...,n|. Next, insert each rule o directly after
the last argument position that it needs (due to matching or non-linearity). If
several rules are placed between ¢ and ¢ + 1, the textual order of the original
specification is maintained.

We applied this strategy to several specifications, with satisfactory results.
The application domain is verification of distributed systems, where a system
specification has a process part and an algebraic data specification part. A
theorem prover is being implemented, to solve boolean combinations of equal-
ities over the algebraic data specification, by a combination of BDDs and term
rewriting, along the lines of [10]. In many cases, innermost rewriting didn’t
lead to a normal form. Below we list a number of rules in order to illustrate
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this point:

o Fvzw—z

B: TVz—T

v:  count(l) — if (empty(l), 0,1+ count(tail(l)))
§: div(m,n) — if(m <n,0,1+ div(m — n,n))

e: rem(m,n) = if (m < n,m,rem(m — n,n))

On closed lists, count terminates with the just-in-time annotation [y, 1] (as-
suming standard definitions of empty and tail), but it diverges with innermost
rewriting. This could be solved by replacing if by pattern matching, provid-
ing rules for count([]) and count([z|L]). However, this solution is not easily
available for div and rem (division and remainder). Assuming standard defi-
nitions of — and <, these functions terminate on closed numerals m and n for
positive n, with the just-in-time annotation [d/¢, 1, 2], but they diverge with
innermost rewriting. The just-in-time annotation for V is [1,«, 3,2]. With
this annotation, eq(n,0) V div(m,n) < m terminates for all numerals m and
n, even for n = 0, provided eq(0,0) — T.

The just-in-time strategy works from left-to-right. Sometimes it is more
efficient to start with another argument. One could devise an algorithm to
transform a TRS by reordering the arguments to the function symbols. In
general, one could study which of the full and in-time annotations yields the
most efficient strategy for a given TRS.

4.2 Implementation Issues

We now shortly mention some well-known implementation issues. First, a
rule o : f(z) — g¢(z,z,z) with annotation [, 1], would copy all redexes in
z three times. Therefore, in our implementation we use maximally shared
terms (DAGs), in which z occurs only once. The implementation uses the ef-
ficient annotated term library [3], providing maximally shared terms, garbage
collection and term tables (for memoization) for free.

Another issue is that in a rule o : f(z) — g(z) with annotation [1, o], first
z is normalized by f to n, and then g(n) is called. Because g doesn’t know
that n is normal, it will traverse the whole n. To avoid this, all subterms which
are known to be normal are marked. So g will get a marked argument, which
it doesn’t traverse. If the annotation would be [a, 1], as with the just-in-time
strategy, ¢ would get z unmarked. A similar approach can be found in [18].

Finally, consider the rule « : f(z) — g(h(z)). In innermost rewriting, =
can be normalized, passing the result to function f. Then f calls function
h and g, respectively. These functions expect normal forms as arguments.
Note that the term h(z) is not actually built by f. With the annotation
[c, 1] this is not possible. We have to build at least the term h(z), which
must be passed to g before normalization. At this point we have to face some
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penalty compared to innermost rewriting, because term formation is relatively
expensive, especially for maximally shared terms.

5 Future Work

We mentioned that in many examples, the just-in-time strategy has a better
termination behaviour than innermost rewriting. We now generalize this to
the following:

Conjecture 5.1 Let R be a TRS with a full and in-time strategy annotation
strat. If t is strongly normalizing under the leftmost-innermost strategy, then
strategy strat on t terminates.

(If the rules are non-root-overlapping, “strongly” could be dropped). This
would be an important result, implicating that a rewrite implementation can
make the transition from leftmost-innermost to just-in-time rewriting, without
repercussions for the users. The improvement would be conservative, in the
sense that all previous examples still terminate, and some more.

We restricted attention to deterministic strategies. By dividing the an-
notations in groups, one could denote non-deterministic strategies. I.e. the
innermost strategy (not just left-most innermost) is specified by an annota-
tion like [{1,2, 3}, {c, B,7}]. In the proof machinery, rewrites must be replaced
by sets of rewrites, and the deterministic sequences by non-deterministic tran-
sition systems. In fact our proof is a bisimulation proof on sequences and this
technique carries over to transition systems in a straightforward way?. How-
ever, the straightforward implementation of annotation [{1,2}] would either
choose to normalize the first argument completely, or the second which would
not be memory-less. A memory-less strategy would allow alternations of steps
in the first and second argument.

Another indication that the non-deterministic case is different is that the
following TRS (after Toyama), is a counter-example to our conjecture in the
case of non-deterministic strategy annotations:

a: f(0,1,z) = f(z,2,2) B:2—0 v:21

Any innermost reduction of f(0,1,2) terminates. But the non-deterministic
strategy indicated by f : [1,2, o, 3] and 2 : [{8, v}] allows an infinite reduction
£(0,1,2) = f(2,2,2) = £(0,2,2) > £(0,1,2) - ---
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? History-sensitive non-deterministic strategies form a coalgebra: State — P(Rewrite X
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A Program Transformations

A.1  From norm to norm,

Take as definition:
normy(t,p, L) =t[norm(t|,, L)],
Then calculate:

normy(t,p, 1) = t{norm(t|p, [])],
= t[tlplp
=t
Let o : I = 7. If t|, = I, for some o, then:
norm(t, p, [a|L]) = t{norm(tl, [2|L])]
=t[norm(r?, strat(r’))],
=t[r"],[norm(t[r°lplp, strat(r”))l,
= normy(t[r’]p, p, strat(r?))
If t|, # 1%, for any o, then:
normy(t, p, [a|L]) = t{norm (t[, [@|L])],
=t[norm(t|p, )],
=norm,(t,p, L)
Finally,
normy(t, p, [i|L]) =t[norm(tl,, [¢| L])],
tlnorm(t|y[norm(tlpl:, strat(¢lp:))]s, L)l
t{norm (tlp[norm(tlp., strat(t(ps))li, L)y
= {introduce abbreviation A}
tlnorm(t|,[A];, L)],
t{Alp.i[norm(¢[p[Al;, L)],
t[Alpi[norm(¢[Alp.ilp, L)]p
normq (t[Alps,p, L)
normq (t[norm(t|y ., strat(t|p.s))lp.i, p, L)
normy(norms (t, p.i, strat(t|ys)),p, L)

I

A.2  From norm; to norms
Take as definition:
norma(t,[]) =t
norma(t, [(p, L)|S]) = norme(normy (¢, p, L), S)
Then calculate:

norms(t, [(p, )| S]) = norma(norm (2, p, []), 5)
=norma(t, S)
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Let o : [+ r, if |, = 17 for some o, then:
norma(t, [(p, [@|L])|S]) = norma(norm (¢, p, [@|L]), S)
= norma(normy (t[r%],, p, strat(r)), S)
= norma(t[r’p, [(p, strat(r))|S])
If t|, # I° for any o, then:
norma(t, (b, [2|L])IS]) = norma(norm (4, 5, [olL]), §)
= norma(norm,(t,p, L), S)
= norma(t, [(p, L)|S])
Finally,
norma(t, [(p, [{[L])|S]) = norma(norm, (¢, p, [i|L}), S)
= norms(normy(normy(t, p., strat(t|p:)), p, L), S)
= normay(normy (¢, p.i, strat(t|,.)), [(p, L)|S])
=norma(t, [(p.3, strat(t],:)), (p, L)|S])

A.8 From last(seq,) to norms

Take as a definition:
norms(t, S) = last(seg,(t, S))
We will use several times that if rewrs(t,S) = rewrs(t, R), then seg,(t,S) =
seqy(t, R). Now calculate:
norms(t, []) = last(seq,(t, []))
= {rewry(t,[]) = L}
last((t))
=%
Next,

norms(t, [(p, [])|S]) =last(seqs (¢, [(p, [1)15]))
= {rewrs(t, [(p,[1)|S]) = rewrs(t, S)}
last(seqy(t, S))
= norms(t, S)
Next, if & : { — 7 and t|, = [, for some o:
norms(t, [(p, [a[L])|S])
= last(seg,(t, [(p, [|L])|S]))
= {rewrs(t, [(p, [|L])|S]) = (p,7°, [(p, strat(r?))|S])}
last(t :: segy (t[r7lp, [(p, strat(r?))[S]))
=last(seq,(t[r7],, [(p, strat(r?))|S]))
= norms(t[r’l,, [(p, strat(r?))|S])

Otherwise, if t|, # I° for any o:
normy(t, [(p, [ L])| S]) = last(seq, (2, [(, [«|L])|5]))
18



= {rewrs(t, [(p,[@|L))|S]) = rewrs(t, [(p, L)|S])}
last(seqs(t, [(p, L)|S]))
=normy(t, [(p, L)|S])

Finally,

norms(t, [(p, [¢|L])|S])

= last(segy(4, [(p, [i|L])]S]))

= {rewns(t, (o, BIZDIS) = rewrs s, (9, strat(tlp)). (o, L)IS])
last(seqy(t, [(p-, strat (tlps)), (p, L)|51))

= norms(t, [(p-4, strat(t,.:)), (p, L)|5])

B Full Proofs of Lemma 3.4-3.7
B.1  Proof of Lemma 38.4.(3).

Let strat be in-time, let [(p, L)|S] be a well-formed stack, and assume that
rewrs(t, [(p, L)|S]) = (g, s, R), where ¢ # p. We now have to prove the follow-
ing: rewry(t,[(p, L)|S]) = rewrs(t,S). This is by induction on ¢|, and within
that on L. We proceed by case distinction on L.
* L =[] In this case, rewrs(t, [(p,[])|S]) = rewrs(t, S) by definition.
o L=[lr r|L]: IfI° = t|,, then p = ¢, in contradiction with the assumption
g 2 p. So l7 #t|, for any 0. Then
rewrs (t, [(p, L)|S]) = rewrs (¢, [(p, L')| S])
= {Induction Hypothesis (L' < L)}
rewrs(t, S)
« L = [i|L']: First note that if ¢ > p.i then g > p.
rewrs(t, [(p, L)|S]) = rewrs(t, [(p4, strat (tp.)), (p, L')|S])
= {Induction Hypothesis (t|,; < t|,)}
rewrs(t, [(p, L')|5])
= {Induction Hypothesis (L' < L)}
rewrs(t, S)

B.2  Proof of Lemma 8.4.(1i).

Let strat be in-time, let [(p, L)|S] be a well-formed stack, and assume that

rewrs(t, [(p, L)|S]) = (p, s, R). We have to prove: R = [(p, strat(s))|S]. This
is by induction on L:

* L = []: Impossible, because p is not revisited from stack S (here well-
formedness of [(p, L)|S] is used).

o L=[iL:
(p, s, R) = rewrs(t, [(p, L)|S))
= rewry(t, [(p.3, strat(t|p.)), (p, L')|S])
19



= {p 2 p.i, so use Lemma 3.4.(i)}
rewry(t, [(p, L')|5])
Hence by Induction Hypothesis (L' < L), R = [(p, strat(s))|S].
e L = [l = r|L']: If t|p = 19, for some o, then R = [(p, strat(s))|S] by
definition of rewrs. Otherwise, t|, # 17, for any o, then
(p, s, R) = rewrs(t, [(p, L)|S]) = rewrs(t, [(p, L')|S])
Hence by Induction Hypothesis, R = [(p, strat(s))|S].

B.8 Proof of Lemma 3.4.(1i).

Let strat be in-time, let [(p, L)|S] be a well-formed stack, and assume that
rewrs(t,[(p, L)|S]) = (g,s,R), with ¢ £ p. We now have to prove that
rewre (t[s]q, [(p, L)|S]) = rewrs(t[s]q, R).

Starting with stack [(p, L)|S] and term ¢, rewrp reduces in a number of
steps to (g, s, R). The proof proceeds by mimicking this reduction starting
with the same stack in term t(s], (see Figure 1). The proof is by induction
on the number of recursive calls of rewrs (2, [(p, L)|S]) to (g, s, R). Distinguish
cases for L.

* L = []. First, rewrs(t,[(p, [))|S]) = rewrs(t,S) and rewry(t[s]q, [(p, [)I5]) =
rewrs (t[slg, S). S # [], for then the result would be L. By well-formedness
of S, p=1p.jand S = [(p,L)|S"] for some p', L', S’. Note that ¢ £ p'.
Hence by induction hypothesis, rewrs(t[s],, S) = rewrs(t[s]y, R).

e L = [¢|L']. Then rewry(t, [(p-, strat(t|ps)), (p, L')|S]) =
rewrs (t, [(p, [¢|L'])|S]) = (g, s, R). Distinguish cases:

- If p.i = g, then by Lemma 3.4.(ii), R = [(p-t, strat(s)), (p, L")|S)].
rewrs ({fsl,, [(p, B1L)1S))
— rewrs (t[s]g, [(p-i, strat ([slylp). (7, I)]S)
= rewrs (t[s]q, [(p-1, strat(s)), (p, L')|S])
= rewrs (t[s]y, R)
- Otherwise, if p.i # ¢, then ¢ £ p.i. Note that the new stack is well-formed,

because ¢ ¢ L' by the assumption that annotations have no duplicates.
So the induction hypothesis can be used.

rewrs (t[slq, [(p, [E|L'])1S])
= rewry (t[s]y, [(p-4, strat (¢[s]qlp.), (p, L')|S])
= {head(t[s]q|ps) = head(t|,.)}
rewrs (t[s]g, [(p-4, strat (tlp4)), (p, L')S])
= {By Induction Hypothesis}
rewrs(t[s]y, R)
* L =[l— r|L. If t|, = I° for some o, then (g, s, R) = rewrs(t, [(p, L)|S]) =
(p, 7%, [(p, strat(r°))|S]), which contradicts ¢ £ p (in fact this case is dealt
with in part 2).

20



Hence t|, # ° for any 0. We first prove that ¢[s]y|, # I for any o. This is

done by distinguishing two cases:

- If ¢ # p, then t[s]y], = tlp, S0 t[s]qlp # I for any o.

- If ¢ > p, then ¢ = p.i.p’ for some %, p’. In this case i € L, because p.i will
not be revisited from S by the well-formedness of S. Because L is in-time,
argument ¢ is not needed by rule I — r, so by Lemma 2.1, ¢[s],|, # 1, for
any o.

Now (g,s,R) = rewrs(t, [(p,L)|S]) = rewry(t,[(p,L')|S]). Similarly, we

have rewrs (t[sq, [(p, L)|S]) = rewry (t[slq, [(p, L')|S]). By induction hypoth-

esis the latter equals rewrs (¢[s]q, R).

B.4 Proof of Lemma 8.5.

Let strat be in-time, and let rewrs (¢, [(e, strat(t))]) = (g, s, R). We must prove:
rewry (t[s]q, R) = rewrs(t[sq, [(¢, strat(t[s],))]).
o If ¢ = ¢, then
rewrs (t[sle, R) = {by Lemma 3.4.(ii)}
rewrs (t[s]e, [(€, strat(s))])
= rewrg (t[s]e, [(g, strat(t[s]e))])
» Otherwise, ¢ > &, so ¢ £ €. Then we have:
rewrs(t[s]q, R) = {by Lemma 3.4.(iii)}
rewrs(t[sy, (¢, strat(t))])
= {head(t[s],) = head(t)}
rewrs (t[s], [(&, strat(t[s],))])

B.5 Proof of Lemma 3.6.

We have to prove the following:
(i) if rewr;(t]p, L) = (g, s), then for some R, rewrs(t, [(p, L)|S]) = (p-¢, s, R)-
(i) if rewr;(t],, L) = L, then rewrs(t, [(p, L)|S]) = rewry(t,.S).
The proof is by simultaneous induction, on t|, and within that on L. The
proof proceeds by case distinction on L:
e L=
(i) rewr;(t|,,L) = (g,s): Impossible
(ii) rewr;(t|p, L) = L: By definition, rewrs(t, [(p, [])|S]) = rewrs(t, S).
e L=[i|L):
(i) rewr;(t|,,L) = (g,s): Distinguish cases:
- rewry (t|ps, strat(t|y5)) = L: Then rewr;(t]p, L') = rewrs(t|,, L) = (g,5),
and
rewrs (¢, [(p, L)|S]) = rewrs (t, [(p3, strat(t],.1)), (p, L)|S])
= {By Induction Hypothesis (ii) (t|,.: < t[p)}
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rewrs (t, [(p, L')|S])
= {By Induction Hypothesis (i) (L' < L)}
(p-g, s, R) for some R
- rewr; (t|p.i, strat(t|ps)) = (¢',s'): Then ¢ =i.¢' and s’ = s.
rewrs (¢, [(p, L)|S]) = rewrs (t, [(p, strat(t]54)), (p, L')|S])
= {By Induction Hypothesis (i) (t|,: < t,)}
(pi.d, s, R) for some R
=(p.q,s, R)
(ii) rewr;(t|p, L) = L: Then rewr;(t|p., strat(t|y;)) = L and rewr;(t],, L') =
1. Hence
rewrs(t, [(p, L)|S]) = rewrs (t, [(p-3, strat(t]y.)), (p, L')]S])
= {By Induction Hypothesis (ii) (t|,; < t[,)}
rewrs (t, [(p, L')|S])
= {By Induction Hypothesis (ii) (L' < L)}
rewrs (t, S)
e L=[lwr|L):
(1) rewrs(t|y, L) = (g, s): Distinguish cases.
- If t|, = 17 for some o, then (g, s) = rewr,(t|p, L) = (,7°) and
rewrs (1, [(p, L)|S]) = (p, 7%, [(p, strat(r”))|S])
= (p.,r’°, R) for some R
- Otherwise, t|, # I° for any o, so (g,s) = rewr;(t|,, L) = rewr;(t|p, L'),
and
rewry (¢, [(p, L)|S]) = rewrs (t, [(p, L')|S])
= {By Induction Hypothesis (i) (L' < L)}
(p.g, s, R) for some R
(ii) rewr;(t|,,L) = L: Then t|, # 1° for any 0. So L = rewr;(t|,,L) =
rewry (t|,, L'), and
rewrs(t, [(p, L)|S]) = rewrs (¢, [(p, L')|S])
= {By Induction Hypothesis (ii) (L' < L)}
rewry (t, S)

B.6  Proof of Proposition 3.7.

We must prove that seg,(t, [(g, strat(t))]) = seg,(t). In order to present this
as a program transformation, we introduce the following specification as a
definition:

seqs(t) = seg,(t, [(¢, strat(t))))
Now we calculate:
seqs(t) = seqy(t, [(&, strat(t))])
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(if rewrs(t, [(g, strat(t))]) = (¢, s, R) for some ¢, s, R
=4 then t:: seq,(t[s]q, R)

| else (t)

= {By Lemma 3.5}

(i rewrs (t, [(g, strat(t))]) = (g, s, R) for some ¢, s, R
< then t :: seq,(t[s]y, [(, strat(t]s]y))])

else (t)

(it rewrs(t, [(e, strat(t))]) = (g, s, R) for some ¢, s, R
=< then ¢ :: seqs(t[s],)

else (t)

= {By Lemma 3.6}

(i rewr; (t) = (g, s) for some g, s
{ then ¢ :: seqs(t[s],)

L else (t)

This is exactly the defining equation of seg;.
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